激振器的原理及测试相关问题
激振器和功率放大器组成了一套典型的激振器测试硬件,这实际上是一个带有放大器的声圈马达,类似于立体声扬声器。将信号输送给放大器,放大器将信号输送给激振器,信号可以是简单的正弦波或正弦扫频信号。但对于模态测试而言,这些信号通常是随机的或确定性的。常用信号有随机或者猝发随机(不确定性信号)、正弦快扫,伪随机或数字步进正弦(确定性信号)。
上图为试验模态测试中典型的激振器及功放配置
激振器可用于机床、桥梁、水坝等模型激振试验。通过模型试验可以测得试验对象的动刚度、阻尼系数、固有频率等动态参数,从而为设计提供了不可缺少的数据。
用于激振器激励方式的模态分析,配合阻抗头记录下激振的力信号、结构响应加速度信号,通过数据后处理得到结构模态参数。根据不同试验要求,选择不同推力的激振器,并配合信号源和功率放大器,可以对结构进行定频、扫频等多种有效激励。
1激振器功放设置为恒流或恒压有什么区别?
大多数一般用途的激振器,功放会设置为恒流模式。当使用一些更常用的激振器激励技术用于模态测试时,这种设置无法提供高质量的频响函数测量。这个对猝发随机激励的影响更为严重,猝发随机激励技术被广泛应用于单个或多个激振器的模态测试。当使用猝发随机激励时,系统的响应需要在FFT分析仪的采样周期结束之前衰减到零。功放设置为恒流模式,在激励结束后,允许激振器线圈的电枢自由浮动。对于阻尼非常小的系统而言,有时激励和响应远远超出了采样周期。
然而,当功放被设置为恒压模式时,反电动势效应对电枢提供的阻抗有助于使系统响应更快地衰减。这样激振器系统似乎为测量提供了阻尼,这似乎是不合理的。但这并不是真正的问题,只要整个测试过程中一直在测量激励力,那么,正确的输入输出关系便被测量记录下来了。(这儿还需要着重注意的是,为了获得正确的测量数据,需要测量激励力,而不是测量功放的电参数)。
2有些激振器有耳轴:是否真的需要,为什么要有它?
耳轴实际上是一个支承激振器的支架;它允许激振器旋转到不同的位置。耳轴是激振器系统的一个非常重要的特征,如果没有耳轴,设置激振器模态试验将非常困难。耳轴允许激振器在不同的方位和角度进行激励。当使激振器对准结构以便进行模态试验时,耳轴就非常有用了。结构往往在不同的方向有不同的模态,这些方向相互之间可能是正交的。在这种情况下,为了使每个不同的模态受到充分的激励,需要在X、Y和Z向上提供激励。一种替代的方法是将激振器安装在与结构有倾角的方向上,这样所有不同方向的不同模态都可以同等地受到激励。激振器耳轴在这些类型的测试中绝对是必要的。
3模态测试激振器最佳的激励位置在哪里?
激振器激励位置的选择与在哪里放置参考加速度计有所不同,但两者的一些思路是相同的。对于移动力锤的模态测试而言,参考加速度计应放置在所有模态响应都较大的位置。一般来说,激振器参考点位置也有相同的要求,但需要考虑一些额外的事情。通常,激振器的行程和速度有限,同时激振器的最大推力决定了最大加速度。因此,如果激振器安装在位移大或者响应速度大的位置,那么激振器就跟不上结构的响应,激振器就不会施加激励给结构,而是跟随结构的响应。这称为阻抗不匹配。当发生这种情况时,力谱在结构的一个或多个共振频率处会有衰减,从而降低测量的频响函数和相干函数的质量。这种情形得不到良好的数据。在这种情形下,激振器应当位于结构的其它位置,这个位置结构的总响应要小一些,使得激振器在感兴趣频率范围内为结构施加良好的、宽带的、相当平坦的输入力谱。当然,为了做到这一点,需要对结构的预期模态振型有一些了解,但如果没有任何结构模态振型的先验知识,做到这一点就非常困难。通常,在进行激振器测试之前,如果没有其他信息可用,一个初步的锤击模态测试能提供有用的信息,可以帮助了解模态振型。
4测试时如何约束激振器?
当设置激振器测试时,为了在想要的方向对结构进行激励,激振器必须与结构对齐。通常所用的激振器推力量级很低,不需要将激振器牢固地固定在地板或工装上。然而,可能会有一些振动通过基座传递到地板上。在这种情况下,激振器牢固地安装在地板上是很关键的。对于低量级的推力,基座周围的热胶固定可能绰绰有余。但在某些情况下,热胶固定可能不够,可能需要某种安装装置。激振器可能需要用螺栓连接到地板上。另一种可能情况是在连接/对准激振器系统之前,使激振器耳轴座落在沙袋上。这种方法并不总是有效,但这是降低激振器基座振动的另一种变通方法。如果观察到激振器基座振动,在测试过程中要检查激振器顶杆对准,以确保不发生偏斜。此外,还应经常检查驱动点频响函数,以确保系统没有发生重大变化。
5悬挂激振器进行横向激励的最佳方式是什么?
通常,横向激励需要使用一个激振器吊架,为了允许激振器进行水平运动时,需要在激振器四个单独的位置处悬吊。有时需要在激振器底部增加惯性重量,以提高激振器系统的低频激励性能。